
PHYSICAL REVIEW E, VOLUME 64, 036405
Probability density function model equation for particle charging in a homogeneous dusty plasma

R. V. R. Pandya and F. Mashayek*
Department of Mechanical Engineering, University of Illinois at Chicago, 842 West Taylor Street, Chicago, Illinois 60607

~Received 24 January 2001; revised manuscript received 15 May 2001; published 29 August 2001!

In this paper, we use the direct interaction approximation~DIA ! to obtain an approximate integrodifferential
equation for the probability density function~PDF! of charge~q! on dust particles in homogeneous dusty
plasma. The DIA is used to solve the closure problem which appears in the PDF equation due to the interac-
tions between the phase space density of plasma particles and the phase space density of dust particles. The
equation simplifies to a differential form under the condition when the fluctuations in phase space density for
plasma particles change very rapidly in time and is correlated for very short times. The result is a Fokker-
Planck type equation with extra terms having third and fourth order differentials inq, which account for the
discrete nature of distribution of plasma particles and the interaction between fluctuations. Approximate mac-
roscopic equations for the time evolution of the average charge and the higher order moments of the fluctua-
tions in charge on the dust particles are obtained from the differential PDF equation. These equations are
computed, in the case of a Maxwellian plasma, to show the effect of density fluctuations of plasma particles on
the statistics of dust charge.
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I. INTRODUCTION

The phenomenon of a dusty plasma creates a phys
situation in which nanoscale~dust! particles are formed from
molecular species and acquire charge by interacting w
electrons and ions~hereafter referred to as ‘‘plasma pa
ticles’’!. In recent years, through experimental studies@1–3#
in radio-frequency plasma reactors, a general understan
of the phenomenon has evolved into a ‘‘four-step’’ theore
cal model describing the birth and growth of dust partic
and their effect on the plasma parameters@4# ~see also Refs
@5,6# for recent reviews!. These four steps include the fo
lowing

~i! The generation of supersmall@O(2 nm!# particles from
molecular species.

~ii ! The charging and selective trapping or levitation
supersmall or dust particles.

~iii ! The growth of nanoparticles due to coagulation
dust particles.

~iv! Thea-g8 transition phenomenon during the coagu
tion process when the radius of the dust particle beco
higher than a critical value and the electron losses on
particle become more essential than those on the walls o
reactor. In this situation, the electron concentration decre
dramatically and, consequently, the electron temperature
creases to support the plasma balance in the reactor@4#.

The dust particles~hereafter simply referred to as ‘‘par
ticles’’! move under the influence of forces that are stoch
tic in nature, and the charging mechanism, collision, a
coagulation of the particles further enhance the comple
to develop a predictive theory from first principles@7–9# for
the description of the phenomenon.

In this work, we restrict our attention to the charging
the particles in homogeneous plasma, without taking i
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account their back effects on the plasma particle distribut
and the related plasma parameters. We assume the pa
velocity to be negligible in comparison to the plasma parti
velocity. This ideal situation is identical to the situation stu
ied in the recent past@10–17#. These studies further provide
the foundation for investigations on particle growth@18–21#
and heating of particles@22,23#.

When the charge of the plasma particles (es) is small, the
equation for the phase space densityf (q,t) for the particle
chargeq at time t is given by@9#

]

]t
f ~q,t !1

]

]q
@ I f ~q,t !#2

]2

]q2
@Q f~q,t !#50, ~1.1!

where

I 5(
s

E esgsvs f s~r ,vs ,t !dvs ~1.2!

and

Q5
1

2 (
s

E es
2gsvs f s~r ,vs ,t !dvs , ~1.3!

with boldface indicating a vector. Here the subscripts
5$ i ,e% represents properties for ions~i! and electrons (e),
and f s(r ,vs ,t) represents the phase space density for plas
particles, withr andvs denoting the position and velocity o
plasma particles, respectively. We assume the velocity of
particles (v) to be negligible in comparison to the plasm
particle velocity (vs), and writevs5uvs2vu>uvsu. Heregs

is a cross section for charging collisions between dust p
ticles and plasma particles, and is determined by the o
motion limited approach@24#,
©2001 The American Physical Society05-1
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gs5pa2S 12
2esq

4pe0amsvs
2 D QS 12

2esq

4pe0amsvs
2 D ,

~1.4!

where a is the particle radius,ms is the mass of plasma
particle,e0 is the permittivity, andQ is the Heaviside step
function:

Q~x!5H 1, x>0

0, x,0.

The function f s in Eqs. ~1.2! and ~1.3! is stochastic in
nature, thus also makingf (q,t) in Eq. ~1.1! a stochastic
function. The equation for the probability density functio
~PDF! can now be obtained by taking the ensemble aver
of Eq. ~1.1! over a large number of realizations, and th
normalizing it by the total number of dust particles (n0). We
denote the ensemble average by^ & and define

f ~q,t !5n0 f̄ ~q,t !1 f̃ ~q,t !, n0 f̄ 5^ f &, ^ f̃ &50,
~1.5!

f s~r ,vs ,t !5 f̄ s~r ,vs ,t !1 f̃ s~r ,vs ,t !,

f̄ s5^ f s&, ^ f̃ s&50, ~1.6!

I 5 Ī 1 Ĩ , Ī 5^I &5(
s

E esgsvs f̄ s~r ,vs ,t !dvs ,

~1.7!

^ Ĩ &50,

Q5Q̄1Q̃,

Q̄5^Q&5
1

2 (
s

E es
2gsvs f̄ s~r ,vs ,t !dvs , ^Q̃&50.

~1.8!

Note that f̄ is defined such that it satisfies

E f̄ ~p,t !dp51, ~1.9!

and, therefore, it is a probability density function. Now, t
ensemble average of Eq.~1.1! over a large number of real
izations yields

]

]t
f̄ ~q,t !1

]

]q
@ Ī f̄ ~q,t !#2

]2

]q2
@Q̄ f̄ ~q,t !#

52
l

n0

]

]q
@^ Ĩ f ~q,t !&#1

l

n0

]2

]q2
@^Q̃f ~q,t !&#,

~1.10!

having unknown correlationŝĨ f & and ^Q̃f & which pose a
problem of closure similar to well-known turbulence closu
problem. In Eq.~1.10!, we have introducedl, a usual per-
03640
e

turbation expansion parameter, for future convenience
which is set equal to one at the end of our calculations la
in this paper.

Equation~1.10!, with l50, was obtained by Matsouk
and co-workers@11–13# from the master equation for PD
( f̄ ), written in discrete form and for which a solution wa
given by assuming two different expressions forf̄ s describ-
ing Maxwellian and Druyvesteyn distributions for the ener
of plasma particles. Later, Gordiets and Ferreira@14,15# ex-
tended these works to include secondary electron emis
charging mechanism in addition to the absorption of plas
particles described by Eq.~1.7! and ~1.8!. A situation with
different charging mechanisms was further analyzed wit
the Langevin approach by Vaulinaet al. @17# and Khrapak
et al. @16#.

In this paper we donot ignore interactions between fluc
tuations which cause the appearance of unknown correlat
in Eq. ~1.10! while considering charging only due to th
absorption of plasma particles. We obtain expressions
these correlations by using the direct interaction approxim
tion ~DIA !, which was proposed by Kraichnan in his pionee
ing work @25# as a renormalized perturbation method to so
turbulence closure problem. This leads to a closed se
integrodifferential equations for PDF (f̄ ). We then simplify
the equations, under certain conditions, and obtain an
proximate differential equation for the PDFf̄ , from which
macroscopic equations@26# governing the temporal evolu
tion of the average ofq and its higher moments are derive
These macroscopic equations are computed to obtain
temporal evolution of the average ofq and its variance, and
the steady state values for the skewness and kurtosis f
particular case of Maxwellian plasma. These results exh
the effects on the statistics of the dust charge due to
fluctuations-fluctuation interactions neglected in the previo
studies@11–13,8,9#.

II. DIA CLOSURE EQUATIONS FOR THE PDF AND THE
GREEN’S FUNCTION

In this section, we apply the DIA@25,27# method of clo-
sure to obtain approximate expressions for unknown corr
tions ^ Ĩ f & and ^Q̃f &. Equation~1.1! is linear in f for a pre-
scribed statistical description forf s which does not depend
on f, and then we have

f ~q,t !5E Ĝ~q,t;p,t0! f ~p,t0!dp, ~2.1!

whereĜ(q,t;p,t8) is the Green’s function that satisfies; t
.t8:

]

]t
Ĝ~q,t;p,t8!1

]

]q
@ Ī Ĝ~q,t;p,t8!#2

]2

]q2
@Q̄Ĝ~q,t;p,t8!#

52l
]

]q
@ Ĩ Ĝ~q,t;p,t8!#1l

]2

]q2
@Q̃Ĝ~q,t;p,t8!#,

~2.2!
5-2
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Ĝ~q,t8;p,t8!5d~q2p!. ~2.3!

SinceĜ(q,t;p,t8) is not a functional off and is statistically
independent of the initialf at time t0, we can write

f̄ ~q,t !5E G~q,t;p,t0! f̄ ~p,t0!dp, ~2.4!

where

G~q,t;p,t8!5^Ĝ~q,t;p,t8!&, ~2.5!

and thus PDFf̄ (q,t) can be completely determined by th
average Green’s functionG.

We proceed by ensemble averaging Eq.~2.2! to obtain

]

]t
G~q,t;p,t8!1

]

]q
@ Ī G~q,t;p,t8!#2

]2

]q2
@Q̄G~q,t;p,t8!#

52l
]

]q
@^ Ĩ Ĝ~q,t;p,t8!&#1l

]2

]q2
@^Q̃Ĝ~q,t;p,t8!&#.

~2.6!

ExpandingĜ in perturbation series inl as

Ĝ5G01lĜ11l2Ĝ21•••, ~2.7!

substituting it in Eq.~2.2!, and equating the terms with equ
powers inl, yields equations forG0 ,Ĝn$n51,2, . . .%, writ-
ten as

]

]t
G0~q,t;p,t8!1

]

]q
@ Ī G0~q,t;p,t8!#

2
]2

]q2
@Q̄G0~q,t;p,t8!#50, ~2.8!

]

]t
Ĝn~q,t;p,t8!1

]

]q
@ Ī Ĝn~q,t;p,t8!#

2
]2

]q2
@Q̄Ĝn~q,t;p,t8!#

52
]

]q
@ Ĩ Ĝn21~q,t;p,t8!#1

]2

]q2
@Q̃Ĝn21~q,t;p,t8!#.

~2.9!

Equation~2.8! suggests thatG0 is a statistically sharp func
tion and the solution forGn from Eqs.~2.8! and~2.9! can be
written as
03640
Ĝn~q,t;p,t8!5E
t8

t

dsE G0~q,t;z,s!

3H 2
]

]z
@ Ĩ ~z,s!Ĝn21~z,s;p,t8!#

1
]2

]z2
@Q̃~z,s!Ĝn21~z,s;p,t8!#J dz.

~2.10!

Using Eqs.~2.7! and~2.10!, we can writê Ĩ Ĝ& and^Q̃Ĝ& up
to first order inl as

^ Ĩ ~q,t !Ĝ~q,t;p,t8!&

5lE
t8

t

dsE G0~q,t;z,s!

3H 2
]

]z
@^ Ĩ ~q,t ! Ĩ ~z,s!&G0~z,s;p,t8!#

1
]2

]z2
@^ Ĩ ~q,t !Q̃~z,s!&G0~z,s;p,t8!#J dz,

~2.11!

^Q̃~q,t !Ĝ~q,t;p,t8!&

5lE
t8

t

dsE G0~q,t;z,s!

3H 2
]

]z
@^Q̃~q,t ! Ĩ ~z,s!&G0~z,s;p,t8!#

1
]2

]z2
@^Q̃~q,t !Q̃~z,s!&G0~z,s;p,t8!#J dz.

~2.12!

The expressions for correlationŝ Ĩ (q,t) Ĩ (q8,t8)&,
^ Ĩ (q,t)Q̃(q8,t8)&, and^Q̃(q,t)Q̃(q8,t8)& are now written as

^ Ĩ ~q,t ! Ĩ ~q8,t8!&5(
s

E E es
2gs~q,vs!gs~q8,vs8 !vsvs8

3^ f̃ s~r ,vs ,t ! f̃ s~r ,vs8 ,t8!&dvsdvs8 ,

~2.13!

^ Ĩ ~q,t !Q̃~q8,t8!&5(
s

E E es
3

2
gs~q,vs!gs~q8,vs8 !vsvs8

3^ f̃ s~r ,vs ,t ! f̃ s~r ,vs8 ,t8!&dvsdvs8 ,

~2.14!

and
5-3
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^Q̃~q,t !Q̃~q8,t8!&5(
s

E E es
4

4
gs~q,vs!gs~q8,vs8 !vsvs8

3^ f̃ s~r ,vs ,t ! f̃ s~r ,vs8 ,t8!&dvsdvs8 . ~2.15!

While writing Eqs. ~2.13!, ~2.14!, and ~2.15!, we have as-
03640
sumed that fluctuating parts of the phase space den
for ions and electrons are not correlated, i.

^ f̃ i(r ,vs ,t) f̃ e(r ,vs ,t8)&50. Substitution of various correla
tions, as obtained from Eqs.~2.13!, ~2.14!, and ~2.15!, in
~2.11! and ~2.12!, and replacingG0 by G as a process o
renormalization@27,28#, yield, for l51,
-

can
^ Ĩ ~q,t !Ĝ~q,t;p,t8!&

5E
t8

t

dsE G~q,t;z,s!H 2
]

]z F(
s

E E es
2gs~q,vs!gs~z,vs8 !vsvs8 ^ f̃ s~r ,vs ,t ! f̃ s~r ,vs8 ,s!&dvsdvs8G~z,s;p,t8!G

1
]2

]z2 F(
s

E E es
3

2
gs~q,vs!gs~z,vs8 !vsvs8 ^ f̃ s~r ,vs ,t ! f̃ s~r ,vs8 ,s!&dvsdvs8G~z,s;p,t8!G J dz ~2.16!

and

^Q̃~q,t !Ĝ~q,t;p,t8!&

5E
t8

t

dsE G~q,t;z,s!H 2
]

]z F(
s

E E es
3

2
gs~z,vs!gs~q,vs8 !vsvs8 ^ f̃ s~r ,vs ,s! f̃ s~r ,vs8 ,t !&dvsdvs8G~z,s;p,t8!G

1
]2

]z2 F(
s

E E es
4

4
gs~q,vs!gs~z,vs8 !vsvs8 ^ f̃ s~r ,vs ,t ! f̃ s~r ,vs8 ,s!&dvsdvs8G~z,s;p,t8!G J dz. ~2.17!

For known f̄ (p,t0), f̄ s , and^ f̃ s(r ,vs ,t) f̃ s(r ,vs8 ,t8)&, Eqs.~2.4!, ~2.6!, ~2.16!, and~2.17! form a closed set of integrodif

ferential equations for PDFf̄ and average Green’s functionG. In Sec. III we further simplify Eqs.~2.16! and ~2.17! by
incorporating some approximations.

III. APPROXIMATE DIFFERENTIAL EQUATION

Under the condition when fluctuations inf̃ s are very rapid and correlated over a very short period of time, we
approximate Eqs.~2.16! and ~2.17!, written as

^ Ĩ ~q,t !Ĝ~q,t;p,t8!&52
]

]q F(
s

E E es
2gs~q,vs!gs~q,vs8 !vsvs8 E

t8

t

dŝ f̃ s~r ,vs ,t ! f̃ s~r ,vs8 ,s!&dvsdvs8G~q,t;p,t8!G
1

]2

]q2 F(
s

E E es
3

2
gs~q,vs!gs~q,vs8 !vsvs8 E

t8

t

dŝ f̃ s~r ,vs ,t ! f̃ s~r ,vs8 ,s!&dvsdvs8G~q,t;p,t8!G ,

~3.1!

^Q̃~q,t !Ĝ~q,t;p,t8!&52
]

]q F(
s

E E es
3

2
gs~q,vs!gs~q,vs8 !vsvs8 E

t8

t

dŝ f̃ s~r ,vs ,s! f̃ s~r ,vs8 ,t !&dvsdvs8G~q,t;p,t8!G
1

]2

]q2 F(
s

E E es
4

4
gs~q,vs!gs~q,vs8 !vsvs8 E

t8

t

dŝ f̃ s~r ,vs ,t ! f̃ s~r ,vs8 ,s!&dvsdvs8G~q,t;p,t8!G .

~3.2!
5-4
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Substituting Eqs.~3.1! and~3.2! in Eq. ~2.6!, changingt8 to
t0, multiplying Eq.~2.6! by initial PDF f̄ (p,t0) and integrat-
ing over p, and using Eq.~2.4! we obtain an approximate
differential equation for PDFf̄ , with l51, as

]

]t
f̄ ~q,t !1

]

]q
@ Ī f̄ ~q,t !#2

]2

]q2
@~Q̄1D1! f̄ ~q,t !#

12
]3

]q3
@D2 f̄ ~q,t !#2

]4

]q4
@D3 f̄ ~q,t !#50, ~3.3!

where

D1~q,t !5E
t0

t

^ Ĩ ~q,t ! Ĩ ~q,s!&ds, ~3.4!

D2~q,t !5E
t0

t

^ Ĩ ~q,t !Q̃~q,s!&ds, ~3.5!

D3~q,t !5E
t0

t

^Q̃~q,t !Q̃~q,s!&ds. ~3.6!

Equation~3.3! has the form of a Fokker-Planck equatio
with additional terms containing higher~third and fourth!
order derivatives. Equations~1.7!, ~1.8!, ~2.13!–~2.15!, and
~3.3!–~3.6!, with prescribedf̄ s and^ f̃ s(r ,vs ,t) f̃ s(r ,vs8 ,s)&,
03640
form a closed set of equations for charging of the dust p
ticles in homogeneous dusty plasma. In principle, followi
Orszag and Kraichnan@27#, equations for f̄ s and

^ f̃ s(r ,vs ,t) f̃ s(r ,vs8 ,s)& can be obtained by applying th
DIA to the Vlasov equation after incorporating the term
which account for the interactions between plasma partic
and dust particles. If the effects of dust particles on
plasma particles can be ignored, Maxwellian or any ot
appropriate distribution for plasma particles describingf̄ s

may be assumed as a first approximation. An expression
Ĩ can be approximately written in terms of the average va
for esgsvs and the plasma particles density fluctuati
* f̃ sdvs ,

Ĩ 5(
s

E esgsvs f̃ s~r ,vs ,t !dvs

>(
s F E esgsvs f̄ s~r ,vs ,t !dvs

E f̄ s~r ,vs ,t !dvs

G E f̃ s~r ,vs ,t !dvs ,

~3.7!

where the term inside the square brackets is the ave
value. A similar approximate expression can be written
Q̃. Incorporating these approximations into Eqs.~3.4!–~3.6!
allows us to write the expressions in terms of the dens
fluctuation correlation functions@^ñs(t)ñs(s)&# as
D1~q,t !5(
s

E E es
2gs~q,vs!gs~q,vs8 !vsvs8 f̄ s~r ,vs! f̄ s~r ,vs8 !dvsdvs8

E E f̄ s~r ,vs! f̄ s~r ,vs8 !dvsdvs8
E

t0

t

^ñs~ t !ñs~s!&ds, ~3.8!

D2~q,t !5(
s

E E es
3

2
gs~q,vs!gs~q,vs8 !vsvs8 f̄ s~r ,vs! f̄ s~r ,vs8 !dvsdvs8

E E f̄ s~r ,vs! f̄ s~r ,vs8 !dvsdvs8
E

t0

t

^ñs~ t !ñs~s!&ds, ~3.9!

D3~q,t !5(
s

E E es
4

4
gs~q,vs!gs~q,vs8 !vsvs8 f̄ s~r ,vs! f̄ s~r ,vs8 !dvsdvs8

E E f̄ s~r ,vs! f̄ s~r ,vs8 !dvsdvs8
E

t0

t

^ñs~ t !ñs~s!&ds, ~3.10!
5-5
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where ñs(t) is fluctuation over the mean density (n̄s) of
plasma particles. While writing Eqs.~3.8!–~3.10! we have
assumedf̄ s to be stationary, and have used

n̄s5E f̄ s~r ,vs!dvs ,

E E ^ f̃ s~r ,vs ,t ! f̃ s~r ,vs8 ,s!&dvsdvs85^ñs~ t !ñs~s!&.

~3.11!

Assuming the plasma to have stationary statistical prope
for plasma particles, and considering an exponential form
the density correlation function with an integral time sca
ts , we write an approximate expression as

E
0

t

^ñs~ t !ñs~s!&ds>E
0

t

^ñs~ t !ñs~ t !&e2(t2s)/tsds

5Cs@ n̄s~ t0!#2ts~12e2t/ts!,

~3.12!

whereCs5^ñs(t)ñs(t)&/@ n̄s(t0)#2.

IV. MACROSCOPIC EQUATIONS

In this section we first present macroscopic equations@26#
for the general case of homogeneous plasma. Then
present their numerical predictions for the temporal evo
tion of the mean and higher order moments of the charg
the dust particles for the particular case of a Maxwell
plasma. We define

q̄~ t !5E q f̄~q,t !dq, Sn5E ~q2q̄!nf̄ ~q,t !dq,

~4.1!

whereq̄ is the average value of the charge on the partic
andSn represents thenth moment of fluctuations inq over its
mean valueq̄. Using these definitions and Eq.~3.3!, we ob-
tain approximate macroscopic equations@26# for q̄, S2 , S3,
andS4, written as

dq̄~ t !

dt
2 Ī ~ q̄!20.5S2 Ī (2)~ q̄!50, ~4.2!

dS2~ t !

dt
22S2 Ī (1)~ q̄!

22@Q̄~ q̄!1D1~ q̄,t !10.5~Q̄(2)1D1
(2)!S2#50, ~4.3!

dS3~ t !

dt
23S3 Ī (1)26~Q̄(1)1D1

(1)!S2

212@D2~ q̄,t !10.5D2
(2)S2#50, ~4.4!
03640
es
r

e
-
of

s,

dS4~ t !

dt
24I (1)S4212@$Q̄~ q̄!1D1~ q̄!%S21~Q̄(1)1D1

(1)!S3#

248@D2
(1)S210.5D2

(2)S3#224@D3~ q̄!10.5D3
(2)S2#50.

~4.5!

Here the superscriptn51,2, . . . represents thenth deriva-
tive of the function with respect toq and is evaluated atq
5q̄. In general,Ī , Q̄, D1 , D2, andD3 are nonlinear func-
tions, and while writing Eqs.~4.2!–~4.5! we have used the
Taylor series expansion for any nonlinear functionF as

F~q!5F~ q̄!1~q2q̄!F (1)~ q̄!1
1

2
~q2q̄!2F (2)~ q̄!1•••.

~4.6!

The macroscopic equations~4.2! and ~4.3! are now com-
puted for a Maxwellian plasma~i.e., using the Maxwell dis-
tribution function for f̄ s) by a fourth-order accurate Runge
Kutta method with initial conditionsq̄5S250 at timet50.
The typical values for various parameters used in the co
putation are the temperature of the ionTi5300 K; the tem-
perature of the electronTe520Ti ; Me /Mi51.431025,
whereMi and Me are the mass of the ion and the electro
respectively; the average number density of the electronn̄e

53.531015/m3; the average density of the ion,n̄i5n̄e ; and
ei52ee . Using these values, computations are carried
for different values of the remaining parameters (Cs ,ts) to
investigate the effect of the fluctuations-fluctuation intera
tions, which are due to the plasma particle density fluct
tions, on the charging behavior of the dust particles of rad
10 nm. We consider cases in which the root mean squ
density fluctuations for the plasma particles are either
~i.e., Cs50.0001) or 10%~i.e., Cs50.01) and the integra
time scalets50.1 or 0.2 ms, which are small compared
the time required to reach the steady mean dust charge.

In Fig. 1, we present the temporal evolution of the no

FIG. 1. Temporal evolution of the normalized mean du
chargeq̄/ei .
5-6
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malized mean dust particle chargeq̄/ei . In this figure,Cs

50 refers to the cases in which the density fluctuations
plasma particles and consequently the fluctuatio
fluctuation interactions are neglected. The first curve~de-
noted by I ) with Cs50 is obtained by solving Eq.~4.2!
while neglecting the term containingĪ (2). This last term in
Eq. ~4.2! accounts for the contribution to the mean net c
rent arising due to the dust particle charge distribution. T
first term Ī (q̄) describes the net current when all the du
particles have a charge equal toq̄. The comparison of curve
I with the other curve forCs50 shows the importance of th
term containingĪ (2), which is not zero in the Maxwellian
plasma case as the expression forĪ is not a linear function of
q and all the dust particles do not have the same charge
to the stochastic nature in the charging process. The in
sion of the fluctuations-fluctuation interactions in the comp
tation by selecting nonzero values forCs and ts does not
changeq̄ appreciably when these values are small. This
reflected by the curve withCs50.01.

The effect of the fluctuations-fluctuation interactions
more pronounced on the varianceS2, as shown in Fig. 2. In
this figure, the temporal evolution ofS2 /ei

2 with and without
the interaction terms are presented. It is observed that
variance increases from zero at timet50, and asymptoti-
cally reaches a steady state value which can be obtained
Eq. ~4.3! by settingdS2(t)/dt50 and usingq̄ at the steady

FIG. 2. Temporal evolution of the normalized varianceS2 /ei
2 .
03640
f
-

-
e
t

ue
u-
-

s

he

m

state. At the steady state, the effect of the plasma par
density fluctuations appears in the computations through
value of Csts , as suggested by Eqs.~3.12! when t→`.
According to the results in Fig. 2, the variance increases w
the increase in the value ofCsts , i.e., with the increase in
the magnitude and correlation of the plasma particle den
fluctuations.

Using the steady state values ofq̄ for different values of
Cs , andts , the steady state values forS2 , S3 andS4 can be
calculated from Eqs.~4.3!, ~4.4!, and ~4.5! by setting
dS2(t)/dt5dS3(t)/dt5dS4(t)/dt50. In Table I, we
present the steady state values for the normalized m
chargeq̄/ei , the normalized varianceS2 /ei

2 , the skewness
(S3 /S2

1.5), and the kurtosis (S4 /S2
2) for different values of

Cs and ts . It is clear from this table that as the value
Csts increases, the varianceS2 also increases whereas th
skewness remains somewhat unchanged. Further, a no
able decrease in the kurtosis is observed with the increas
Csts . A comparison of the values of the kurtosis in Table
with its value for a Gaussian distribution~i.e., 3.0!, suggests
that the probability distribution function for the dust partic
charge becomes increasingly more non-Gaussian with the
crease in the intensity and/or the correlation time of the d
sity fluctuations of the plasma particles.

V. CONCLUDING REMARKS

A probability density function modeling of charging o
the dust particles was considered in homogeneous d
plasma. The interactions between the phase space dens
the plasma particles and the phase space density of dust
ticles were taken into account. The direct interaction a
proximation ~DIA ! method was used to tackle the closu
problem, and an integrodifferential equation was obtained
the probability density functionf̄ (q,t) and the Green’s func-
tion. These equations are further simplified to a differen
form, and approximate expressions are suggested for var
unclosed terms. The final PDF equation requires a p
knowledge of the ensemble average phase space densityf̄ s)
for the plasma particles, as well as the coefficientCs and the
integral time scale (ts) appearing in Eq.~3.12! for compu-
tations. Though it is possible to solve the partial different
equation for PDF~3.3! by using the existing numerical meth
ods and then to obtain the mean value for the charge (q̄) and
the higher moments of the charge fluctuations (Sn) for the
dust particles, we also gave approximate equations gov
TABLE I. Steady state values for the normalized mean dust charge (q̄/ei), the normalized variance
(S2 /ei

2), the skewness (S3 /S2
1.5), and the kurtosis (S4 /S2

2).

Case q̄/ei
S2 /ei

2 S3 /S2
1.5 S4 /S2

2

Cs50 211.0070 2.948 9.3531022 2.885
ts50.1 ms,Cs50.0001 211.0072 2.950 9.3531022 2.884
ts50.2 ms,Cs50.0001 211.0074 2.952 9.3531022 2.883
ts50.1 ms,Cs50.01 211.026 3.145 9.3631022 2.801
ts50.2 ms,Cs50.01 211.044 3.346 9.3831022 2.721
5-7
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ing temporal evolution ofq̄ andSn . These PDF and macro
scopic equations can be solved numerically for Maxwell
and non-Maxwellian distributions for plasma particle ener
and a parametric study can be performed to assess th
cluded effects of the fluctuations-fluctuation interactions a
the involved approximations. As an example, the me
charge and the higher-order statisticsSn , for dust particles of
radius 10 nm, have been computed for a Maxwellian plas
from the macroscopic equations. It is found that t
fluctuations-fluctuation interactions enhance the varian
while decreasing the kurtosis and thus producing a n
Gaussian distribution for the dust particle charge. These
sults can be assessed against the data, which can be g
no

no

no

.

ys

or

o

03640
n
,
in-
d
n

a

e,
-

e-
ner-

ated by the particle in cell simulation method@29# and/or by
modifying the existing Monte Carlo simulation method d
to Chunshi and Goree@10#.
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