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Probability density function model equation for particle charging in a homogeneous dusty plasma
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In this paper, we use the direct interaction approximat@i ) to obtain an approximate integrodifferential
equation for the probability density functiof?PDF of charge(q) on dust particles in homogeneous dusty
plasma. The DIA is used to solve the closure problem which appears in the PDF equation due to the interac-
tions between the phase space density of plasma particles and the phase space density of dust particles. The
equation simplifies to a differential form under the condition when the fluctuations in phase space density for
plasma particles change very rapidly in time and is correlated for very short times. The result is a Fokker-
Planck type equation with extra terms having third and fourth order differentias\hich account for the
discrete nature of distribution of plasma particles and the interaction between fluctuations. Approximate mac-
roscopic equations for the time evolution of the average charge and the higher order moments of the fluctua-
tions in charge on the dust particles are obtained from the differential PDF equation. These equations are
computed, in the case of a Maxwellian plasma, to show the effect of density fluctuations of plasma particles on
the statistics of dust charge.
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[. INTRODUCTION account their back effects on the plasma particle distribution
and the related plasma parameters. We assume the particle
The phenomenon of a dusty plasma creates a physicaklocity to be negligible in comparison to the plasma particle
situation in which nanoscalglus) particles are formed from velocity. This ideal situation is identical to the situation stud-
molecular species and acquire charge by interacting witfed in the recent pagt0—-17. These studies further provided
electrons and ionghereafter referred to as “plasma par- the foundation for investigations on particle groWit8—21
ticles”). In recent years, through experimental studies3] ~ and heating of particleg22,23. _ _
in radio-frequency plasma reactors, a general understanding YWhen the charge of the plasma particleg)(is small, the
of the phenomenon has evolved into a “four-step” theoreti-€guation for the phase space densifg,t) for the particle
cal model describing the birth and growth of dust particlescharged at timet is given by[9]
and their effect on the plasma parameferfs(see also Refs.
[5.,6] for recent reviews These four steps include the fol- 9 J 92
lowing “f@n+ - [1f(q.n]-—[Qf(q,n)]=0, (1.1)
(i) The generation of supersmad(2 nm)] particles from g q
molecular species.
(i) The charging and selective trapping or levitation of\where
supersmall or dust particles.
(iii) The growth of nanoparticles due to coagulation of
dus.t pal’tIC|es. . . l :2 J el)"y{TUO'fO'(rVV(T!t)dV(T (12)
(iv) The a-y' transition phenomenon during the coagula- o
tion process when the radius of the dust particle becomes
higher than a critical value and the electron losses on th
particle become more essential than those on the walls of the
reactor. In this situation, the electron concentration decreases
dramatically and, consequently, the electron temperature in-
creases to support the plasma balance in the repgtor
The dust particleghereafter simply referred to as “par-
ticles”) move under the influence of forces that are stochas- R ]
tic in nature, and the charging mechanism, collision, angVith boldface indicating a vector. Here the subscript
coagulation of the particles further enhance the complexity™{i.€} represents properties for ioti§ and electrons€),
to develop a predictive theory from first principlgg-9] for ~ @ndf,(r,v,,t) represents the phase space density for plasma
the description of the phenomenon. particles, WIFhI’ andv,, denotlng the position and veloc_:lty of
In this work, we restrict our attention to the charging of Plasma particles, respectively. We assume the velocity of the

the particles in homogeneous plasma, without taking intdarticles ¢) to be negligible in comparison to the plasma
particle velocity ¢,), and writev ,=|v,—Vv|=|v,|. Herey,

E— is a cross section for charging collisions between dust par-
*Corresponding author. Tel312 996-1154, Fax:(312) 413- ticles and plasma particles, and is determined by the orbit
0447, Email address: mashayek@uic.edu motion limited approacti24],

1
QZE 2 fe§7000f0(rivo1t)dvo1 (13)
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R 1_ _,
47Téoamo.l)§.) ( 4’7T€Oamo.l}§_
(1.9

Vo= 1Ta2< 1-

where a is the particle radiusm, is the mass of plasma
particle, ey is the permittivity, and® is the Heaviside step

function:

1, x=0

®(X):[o x<0.

The functionf, in Egs. (1.2 and (1.3 is stochastic in
nature, thus also making(q,t) in Eq. (1.1) a stochastic

PHYSICAL REVIEW E 64 036405

turbation expansion parameter, for future convenience and
which is set equal to one at the end of our calculations later
in this paper.

Equation(1.10, with A=0, was obtained by Matsouka
and co-worker§11-13 from the master equation for PDF

(f), written in discrete form and for which a solution was

given by assuming two different expressions fgrdescrib-

ing Maxwellian and Druyvesteyn distributions for the energy
of plasma particles. Later, Gordiets and Ferr¢ird, 15 ex-
tended these works to include secondary electron emission
charging mechanism in addition to the absorption of plasma
particles described by Eql.7) and (1.8). A situation with
different charging mechanisms was further analyzed within

function. The equation for the probability density function the Langevin approach by Vauliret al. [17] and Khrapak
(PDP can now be obtained by taking the ensemble averaget al.[16].

of Eq. (1.1) over a large number of realizations, and then

normalizing it by the total number of dust particlag). We

denote the ensemble average(dyand define

nof=(f), (f)=0,
(1.9

f(qlt):nof—(qat)—’_?(q!t)r

£ (r, v, ) =f,(r,v, t)+ T (r,v,,t),

f,=(f,), (f,)=0, (1.6
=141, T=()=2 feavgvgf_g(r,vg,odvg,
(1.7)
(M=o,
Q=Q+Q,

_ 1 — ~
Q=(Q)=5 3 [ &y firv 0o, ©@-0
(1.8

Note thatf is defined such that it satisfies

f f(p,t)dp=1, (1.9

In this paper we dmot ignore interactions between fluc-
tuations which cause the appearance of unknown correlations
in Eq. (1.10 while considering charging only due to the
absorption of plasma particles. We obtain expressions for
these correlations by using the direct interaction approxima-
tion (DIA), which was proposed by Kraichnan in his pioneer-
ing work[25] as a renormalized perturbation method to solve
turbulence closure problem. This leads to a closed set of

integrodifferential equations for PDFf_)(. We then simplify
the equations, under certain conditions, and obtain an ap-

proximate differential equation for the PDF from which
macroscopic equation6] governing the temporal evolu-
tion of the average aoff and its higher moments are derived.
These macroscopic equations are computed to obtain the
temporal evolution of the average gfand its variance, and
the steady state values for the skewness and kurtosis for a
particular case of Maxwellian plasma. These results exhibit
the effects on the statistics of the dust charge due to the
fluctuations-fluctuation interactions neglected in the previous
studies[11-13,8,9.

II. DIA CLOSURE EQUATIONS FOR THE PDF AND THE
GREEN’'S FUNCTION

In this section, we apply the DIf25,27 method of clo-
sure to obtain approximate expressions for unknown correla-
tions (Tf) and(Qf). Equation(1.1) is linear inf for a pre-
scribed statistical description fdr, which does not depend

and, therefore, it is a probability density function. Now, the©n f, and then we have

ensemble average of E¢L.1) over a large number of real-

izations vyields

d— 0 — f

Ef(q,tH %[I f(q.t)]—a—qz[Qf(q,t)]
_ X t +£‘9—2 Qf(q,t
= o aq[< (9,1))] o aq2[<Q (9,1))],

(1.10

having unknown correlationdl f) and (Qf) which pose a

problem of closure similar to well-known turbulence closure

problem. In Eq.(1.10, we have introduced, a usual per-

f<q,t>=j &(a,6poto) (P to)dp, 2.

whereG(q,t;p,t') is the Green’s function that satisfidst

>t

9 A . ’ J . ’ (92 Y . ’
EG(thipit )+%[|G(q,t,p,t )]_&TqZ[QG(q’t'p’t )]

0 P
=—)\£[IG(q,t;p,t )]+>\a—qz[QG(q,t:p,t )1,

(2.2
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G(q,t';p,t")=8(q—p). (2.3

SinceG(q,t;p,t’) is not a functional of and is statistically
independent of the initiafl at timety, we can write

f_(q,t)=J G(a,t;p,to) f(p,to)dp, (2.9

where

G(a,t;p,t")=(G(a,t;p,t")), (2.5

and thus PDFf_(q,t) can be completely determined by the

average Green'’s functioB.
We proceed by ensemble averaging E2) to obtain

J . ’ J — . ’ 52 raY . ’
EG(q,t,p,t )+ E[lG(q,t,p.t )]_a_qz[QG(qyt,P,t )]

J . P’ .
=—>\£[<l (q.t;p,t )>]+>xﬁ—(f[<QG(q,t:p,t N1

(2.9
Expandingé in perturbation series in as

é:Go+)\él+)\2é2+"', (27)

substituting it in Eq(2.2), and equating the terms with equal

powers in\, yields equations fo6,,G,{n=1,2, ...}, writ-
ten as

d J —
EGo(q,t,p,t )+%[IGo(q,t,p,t )]

?
- a_qz[QGO(Q:t:p:t,)]:O,

(2.9
aé . ’ 4 I_é . ’
e n(a.t;p,t )+%[ n(a,t;p,t")]

P
- a_(:]z[QGn(qvtipvt )]

_ J ~a . ’ (92 NA . ’
__a[lanl(qitvpvt )]+a_qz[QGn71(qvtip!t )]

(2.9

Equation(2.8) suggests thaB, is a statistically sharp func-

tion and the solution foG, from Egs.(2.8) and(2.9) can be
written as
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~ t
Gn(q,t:p.t’)=f dSJ Go(a.t;2,9)
tl

J - A~
x[ ~ 1296, 1(zsipt)]

2
+ a—z[b(z,s)én,l(z,s;p,t’)] dz
iz

(2.10

Using Egs(2.7) and(2.10, we can writg{TG) and(QG) up
to first order in\ as

(T(q,H)G(q,t;p,t"))

t
=)\f dsf Go(a,t;z,9)
t/

J - ~
x[ — 5L {1a.D1(z,8)Go(z,5:p,t")]

P -
+E[('(q,t)Q(z,S)>Go(Z,S;p,t’)] dz,

(2.11)
(Q(a,1)G(q,t;p,t"))

t
=)\f dsf Go(q,t;z,5)
t/

aJ _ ~
X[ — 5 [(QA.11(2,9)Go(z,s:p.t)]

P -
+E[(Q(q,t)Q(z,S»Go(z,s;p,t’)] dz.

(2.12

The expressions for correlationgT(q,t)1(q’,t")),
(1(g,t)Q(q’,t")), and(Q(q,t)Q(q’,t')) are now written as

<I(qvt)|(q’1t’)>=; JJei’)/cr(qiva')')/o(q”v:r)vavtlr
X, (r,v, DT, (r,v) ,t"))dv,dv.,
(2.13
. _ e
<I(q1t)Q(q,1t,)>=§ JJ?U’)/O'(q’vG’)’YO'(q”UL’T)UUU(,T

X (£, (r,v, DT, (r,v, ,t"))dv,dv.

(2.19

and
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_ _ e‘f, sumed that fluctuating parts of the phase space density
(Q(q,0HQ(q’" ,t")y=2 ffzvg(q.vg)%(Q’,v;)vav; for ions and electrons are not correlated, i.e.,

(fi(r,v, 1) Te(r,v,,t'))=0. Substitution of various correla-

X (B, (r vy OF (1 v t))dv,dv!.. (2.15  tions, as obtained from Eq$2.13, (2.14), and (2.19), in
e T (2.11) and (2.12, and replacingG, by G as a process of
While writing Egs.(2.13), (2.14), and (2.15, we have as- renormalizatior{27,28, yield, forA=1,

(T(a.HG(a.t;p,t"))
t Jd
=ft,dsf G(q,t;z,s){—ﬁ

3
> %m,vo)n(z,v:,)vuvzxi,(r,vu,tﬁU(r,v:,.,s>>dv(,dv:,e<z.s;p,t'>Hdz 216

> f f e?,y,xq,v(,)n(z,v;)v,,v:,m(r,v,,,tﬁ,,(r,v:,,s)>dv(,dv:,G<z,s;p,t'>}

02
+ [
972
and

(Q(a,H)G(q,t;p,t"))

3
:f:,dsf G(qrtizys)‘—%{g ff%70(2,00)n(q,v;)vgv(’ﬁg(r,vg,s)T,,(r,v[,,t)>dv0dv;G(z,s;p,t')}

& el _ -
T > ffzya(q,v(,)vg(z,v;)vov(’xf(r(r,v(,,t)f”(r,v;,S)>dv(,dv(’,G(z,s;p,t’)”dz. (217
YA o

For knownf(p,to), f., and(f,(r,v,,t)f,(r,v.,t")), Egs.(2.4), (2.6), (2.16), and(2.17) form a closed set of integrodif-
ferential equations for PDF and average Green’s functidd. In Sec. Il we further simplify Egs(2.16 and (2.17) by
incorporating some approximations.

Ill. APPROXIMATE DIFFERENTIAL EQUATION

Under the condition when fluctuations T, are very rapid and correlated over a very short period of time, we can
approximate Eqs2.16) and(2.17), written as

1%

~ ~ t ~ ~
<I(q,t)G(q,t;p,t’)>=—%[§ fje?,n(q,vg)yo(q,v;)vgv;ﬁ,difg(r,vg,t)fo(r,v;,S)>dvgdv;G(q,t;p,t’)}

& el to ~
+[?—qz{2 ff?’YU(quU)’VU'(Q1U:T)UO-U:TJ;/dS<fU(r,VO.,t)fo.(r,V:T,S)>dVO_dV(;_G(q,t;p’t/):|'

(3.1

d

- N el to -
<Q(q,t)G(q,t;p,t’)>=—%{§ ff7n(q,v,,)n(q.v(’,)vovéft,d5<fa(r,va,S)f(,(r,v(’,,t)>dv(rdv(’,G(q,t;p,t’)}

& el to -
+a—q2{2 JfZ%(q,vg)Ya(q,v[,)vgv;ftlds(fg(r,vg,t)f(,(r,v(’r,s))dvgdv(fre(q’t;p,t/)}_
3.2
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Substituting Eqs(3.1) and(3.2) in Eq. (2.6), changingt’ to
to, multiplying Eq.(2.6) by initial PDF f(p,to) and integrat-
ing over p, and using Eq(2.4) we obtain an approximate
differential equation for PDR, with A\=1, as

af_ d T - -

(93 _ 4 _
+2—[Dof(q,0)]- —[Dsf(q,)]=0, (3.3
aq Jq
where

t ~ ~

Dl(q,t)=ft (I(g,t)I(qg,s))ds, (3.9
0
t ~ ~

Dz(q,t)=ft (1(q,1)Q(q,s))ds, (3.5
0
t ~ ~

Da(q,t)=ft (Q(a,t)Q(q,s))ds. (3.6)
0

PHYSICAL REVIEW E64 036405

form a closed set of equations for charging of the dust par-
ticles in homogeneous dusty plasma. In principle, following
Orszag and Kraichnan[27], equations for f, and

(£, (r,v,,),(r,v.,s)) can be obtained by applying the
DIA to the Vlasov equation after incorporating the terms
which account for the interactions between plasma particles
and dust particles. If the effects of dust particles on the
plasma particles can be ignored, Maxwellian or any other

appropriate distribution for plasma particles describﬁg
may be assumed as a first approximation. An expression for

T can be approximately written in terms of the average value
for e,y,v, and the plasma particles density fluctuation

IT,dv,,

=2

o

f e(}"}/(fvo'hfo'(r’vo' ’t)dVU'

J’ e(f‘)/(TUUfU(rYV(}"t)dV(J'

n
<M

f?a(r,vg,t)dvg,
f fo(r,v,, t)ydv,

(3.7

where the term inside the square brackets is the average

Equation(3.3) has the form of a Fokker-Planck equation Value. A similar approximate expression can be written for

with additional terms containing highdthird and fourth
order derivatives. Equationd..7), (1.8), (2.13—(2.15, and

(3.3—(3.6), with prescribedf , and (T (r, v, ,t)T (r,V.,s)),

f f €276( 0,0 ) VoA, )0 g0 L T (1, Ve) T o (V] ) dv,dv

Q. Incorporating these approximations into E¢&4)—(3.6)
allows us to write the expressions in terms of the density

fluctuation correlation functiong(n,(t)n,(s))] as

!

g t - -
Di(q,t)=2 — f (ny(t)ny(s))ds, (3.8
7 fffg(r,vg)fg(r,v;)dvadv; fo
el _ _
jf7”mq.vg)n(q,vpvgv:,fg(r,vg)fa(r.v;)dvadv:, C
Dy(a.)=> — f (R, (7,(9))ds, (3.9
7 Jffg(r,vg)f,,(r,v[,)dvadv(’, fo
et _ _
| [ Zvavontavpo oo feviavay
Ds(q,t) =2, jt(n,,(t)ng(s))ds, (3.10
o 0

f f T o1 Vo) Fo(r, V) dv,dv),
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whereﬁg(t) is fluctuation over the mean densitﬁ,o of
plasma particles. While writing Eq$3.8)—(3.10 we have

assumecf_(, to be stationary, and have used

n,= f [E(AALY

[ [ @utrave ot vt v, v, = (o0, (9)
(3.11)

Assuming the plasma to have stationary statistical propertie:
for plasma particles, and considering an exponential form for

Tle;

the density correlation function with an integral time scale T E = —h ]
T,, We Wwrite an approximate expression as -12 L L L L
0.0 0.2 04 0.6 08 10
¢ ¢ t (ms)
= R — | 5 on —(t-9)/7
fo(ng(t)ng(s))dsz L(ng(t)ng(t))e (79ds FIG. 1. Temporal evolution of the normalized mean dust
chargeq/e; .

=C,[N,(te)?ry(1—e Vo),

dS4(t)
(312 — = 4108, -12{Q(a) +D1(a)} S+ (QW+ D) S]
Y- . 2 _
Whereca <n(r(t)nzr(t)>/[n(r(t0)] . —48[D(21)Sg+05D(22)S3]—24[D3(q)+05D52)SZ]=0
IV. MACROSCOPIC EQUATIONS (4.5
In this section we first present macroscopic equatjaes ~ Here the superscripi=1,2, ... represents thath deriva-

for the general case of homogeneous plasma. Then wéve of the function with respect tq and is evaluated aj
present their numerical predictions for the temporal evolu=g. In generall Q D,, D,, andD5 are nonlinear func-
tion of the mean and higher order moments of the charge dfons, and while writing Egs(4.2)—(4.5 we have used the
the dust particles for the particular case of a MaxwellianTaylor series expansion for any nonlinear functias
plasma. We define

- B - F(q)=F(a)+(q—q)F (1)(q)+ S(@=a)’F@(a)+ -
q(t)=qu(q,t)dq, sz(q—q)“f(q,t)dq, (4.6

4.1
@9 The macroscopic equatiori4.2) and(4.3) are how com-

whereq is the average value of the charge on the partlclespu'[ecj for a Maxwellian plasmé.e., using the Maxwell dis-
ands, represents thath moment of fluctuations ig over its fribution function forf,) by a fourth-order accurate Runge-
mean vaIu&T Using these definitions and E(B.3), we ob- Kutta method with initial condmonq-Sz—O at timet=0.

. . . . — The typical values for various parameters used in the com-
tain appro?(lmate macroscopic equatigas] for g, S, S, putation are the temperature of the iop=300 K; the tem-
andsS,, written as

perature of the electro,=20T;; M./M;=1.4x10°,
whereM; and M, are the mass of the ion and the electron,

—1(q)—0.55,1 @(q)=0, (4.2) respectwely, the average number density of the eIechn

=3. 5>< 10'%/m?3; the average density of the ion,=n,; and
6= Usmg these values, computations are carried out

dSy(t) () for different values of the remaining paramete@,(,) to
t g investigate the effect of the fluctuations-fluctuation interac-
tions, which are due to the plasma particle density fluctua-
T A - ~ (2) _ tions, on the charging behavior of the dust particles of radius
2[Q(q)+Dy(q,t)+0.5QP+D{)s,1=0, (4.3 10 nm. We consider cases in which the root mean square
density fluctuations for the plasma particles are either 1%

Q()

dS;(t) ~ i.e., C,=0.0001) or 10%i.e., C,=0.01) and the integral
— 35 W_(0W+p® (!.e., +=0. ) or ofi.e., «=0. ) and the integral
dt S3 (@ )% time scaler,=0.1 or 0.2 ms, which are small compared to
_ @) the time required to reach the steady mean dust charge.
—12D,(q,t)+0.9D57'S;]=0, (4.9 In Fig. 1, we present the temporal evolution of the nor-
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4 y - T - state. At the steady state, the effect of the plasma particle
density fluctuations appears in the computations through the
value of C,7,, as suggested by Eq$3.12 whent—oo,
According to the results in Fig. 2, the variance increases with
the increase in the value &,7,, i.e., with the increase in
the magnitude and correlation of the plasma particle density
fluctuations.

g 2 . Using the steady state values affor different values of
* C., andr,, the steady state values 185, S; andS, can be
6—0C,=0 calculated from Egs.(4.3), (4.4), and (4.5 by setting
E‘_‘_Ev' g«:gg‘l"’}:«gl";js dS,(t)/dt=dS;(t)/dt=dS,(t)/dt=0. In Table I, we

Lt A—A C=001,7,=02ms 1 present the steady state values for the normalized mean

chargeq/e;, the normalized variancSzleiz, the skewness

(S;/S59), and the kurtosis $,/S3) for different values of
0 L . L . C, and 7. It is clear from this table that as the value of
00 02 04  (ms) 06 08 Lo C,7, increases, the varian® also increases whereas the
skewness remains somewhat unchanged. Further, a notice-
FIG. 2. Temporal evolution of the normalized variargg'e?.  able decrease in the kurtosis is observed with the increase in
C,7,. A comparison of the values of the kurtosis in Table |
malized mean dust particle chargée, . In this figure,C,  With its value for a Gaussian distributi¢he., 3.0, suggests
=0 refers to the cases in which the density fluctuations ofhat the probability distribution function for the dust particle
plasma particles and consequently the fluctuationscharge becomes increasingly more non-Gaussian with the in-
fluctuation interactions are neglected. The first cufde-  crease in the intensity and/or the correlation time of the den-
noted byl) with C,=0 is obtained by solving Eqi4.2)  Sity fluctuations of the plasma particles.

while neglecting the term containiri_gjz). This last term in
Eq. (4.2) accounts for the contribution to the mean net cur- V. CONCLUDING REMARKS
rent arising due to the dust particle charge distribution. The

first term 1(q) describes the net current when all the dust

A probability density function modeling of charging of
. — _ the dust particles was considered in homogeneous dusty
particles have a charge equalgoThe comparison of CUrve  y1asma The interactions between the phase space density of
I with the other curve fo€,=0 shows the importance of the {he plasma particles and the phase space density of dust par-
term containingl ), which is not zero in the Maxwellian ticles were taken into account. The direct interaction ap-
plasma case as the expressionlfag not a linear function of ~proximation (DIA) method was used to tackle the closure
g and all the dust particles do not have the same charge duygoblem, and an integrodifferential equation was obtained for
to the stochastic nature in the charging process. The incluhe probability density functiofi(g,t) and the Green’s func-
sion of the fluctuations-fluctuation interactions in the compu+ijon. These equations are further simplified to a differential
tation by selecting nonzero values 6, and 7, does not  form, and approximate expressions are suggested for various
changeq appreciably when these values are small. This igunclosed terms. The final PDF equation requires a prior
reflected by the curve witle,=0.01. knowledge of the ensemble average phase space dehgty (
The effect of the fluctuations-fluctuation interactions isfor the plasma particles, as well as the coeffici@ptand the
more pronounced on the varianBg as shown in Fig. 2. In  integral time scale £,) appearing in Eq(3.12 for compu-
this figure, the temporal evolution & /e? with and without tations. Though it is possible to solve the partial differential
the interaction terms are presented. It is observed that thequation for PDR3.3) by using the existing numerical meth-

variance increases from zero at tirhe 0, and asymptoti-  ods and then to obtain the mean value for the chagyeatid
cally reaches a steady state value which can be obtained frofpe higher moments of the charge fluctuatioSs)(for the
Eq. (4.3 by settingdS,(t)/dt=0 and usingg at the steady dust particles, we also gave approximate equations govern-

TABLE |I. Steady state values for the normalized mean dust chaage)( the normalized variance
(S,/€?), the skewness3,; /S, and the kurtosis$,/S3).

Case qle, S,le? S;/1S5° S,/S5
C,=0 —11.0070 2.948 9.3810°2 2.885
7,=0.1 ms,C,=0.0001 —11.0072 2.950 9.3810°2 2.884
7,=0.2 ms,C,=0.0001 —11.0074 2.952 9.3810 2 2.883
7,=0.1 ms,C,=0.01 —11.026 3.145 9.3610 2 2.801
7,=0.2 ms,C,=0.01 —11.044 3.346 9.3810 2 2.721
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ing temporal evolution off andS, . These PDF and macro- ated by the particle in cell simulation methf@b] and/or by
scopic equations can be solved numerically for Maxwellianmodifying the existing Monte Carlo simulation method due
and non-Maxwellian distributions for plasma particle energy,to Chunshi and Gorefl0].

and a parametric study can be performed to assess the in-

cludgd effects of the fluctgations-ﬂuctuation interactions and ACKNOWLEDGMENTS
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